
WORK IN PROGRESS

Proof of Real-time Transfer: A Consensus Protocol for
Decentralized Data Exchange and Storage

Abstract
Building a decentralized data platform that guarantees data security, data integrity and data privacy while
catering to the real-time storage and retrieval needs of applications will transcend today’s digital economy
with new opportunities for innovation and growth across sectors. The challenges reside in being able to
handle the sheer volume, variability and velocity that general purpose data transactions are known for and
delivering on the Web3 promises of greater security, transparency and accountability.

We are building Kandola, a decentralized data exchange and storage platform, that shall cater to
the storage and retrievel needs of IoT, healthcare, social and gaming. The platform is driven by a new
consensus protocol named Proof of Real-time Transfer (PoRT, in short). This paper details the design
considerations and inner workings of PoRT consensus and motivates the protocol’s readiness for Byzantine
Fault Tolerance. PoRT’s security gurantees stem from fusion of cryptographic primitives with game
theoretic constructs and is built to meet the demands applications shall place on scale, latency and reciprocal
throughput. Consider this paper as a preview to the decentralized platform that our Team is building.
Detailed performance benchmarks will be published in a subsequent paper.

Keywords: Consensus protocol, decentralized storage, batch derivatives, parallel chains

1. Introduction and Motivation
The digital economy has experienced tremendous growth in recent years, resulting in an unparalleled
increase in data generation and consumption. The global data market is estimated to be valued north
of $1.2 trillion, with expectations for continued expansion. This rapid escalation in data volume
has created an urgent need for efficient and secure storage solutions. While centralized systems
offer certain efficiencies, they have invariably been subject to security breaches, singular points of
failure, high costs and under sporadic instances, data censorship. Building a holistic decentralized
data platform that facilitates the exchange, storage and retrieval of structured data streams, that comes
with the security and privacy guarantees of Web3 and poses high scalability can address real-time
data needs of applications and unlock the hidden potentials behind decentralized data marketplaces.

Kandola is an innovative decentralized infrastructure solution that enables applications to ex-
change, query, and analyze structured data. Kandola facilitates the decentralized verification and
on-chain storage of data, fostering the development of verifiable and privacy preserving applications.
It empowers applications to define their own data schema, maintains their data on dedicated chains,
ensures comprehensive security and privacy while facilitating transparent cost evaluations. Kandola
is powered by a consensus protocol named Proof of Real-time Transfer (PoRT) one that is built
to facilitate the decentralized exchange, storage and retrieval of general purpose data. This paper
introduces PoRT protocol while simultaneously providing a system level overview of Kandola.

PoRT protocol is built for permissionless settings where adversaries can either be static or adaptive.
With data encryption at source, end-point authentication, standardized (and yet customizable)
application-driven message schemas and decentralized verification of data compliance, PoRT protocol
guarantees the security, privacy and integrity of schema-compliant data all through its life-cycle
on the platform. Assuming partially synchronous network settings, PoRT is designed to guarantee
safety (always) and liveness (eventually). Given the domain served, PoRT is designed to handle high

transactions volumes and the steep demands placed on the finite physical resources of the decentralized
platform.

1.1 Core Contributions
Below, the core contributions made through PoRT protocol are discussed.

• To the best of our knowledge, we are the first to deploy two-way cryptographic sortition in random-
ized task assignments. The task assigner identifies a set of potential assignees using crytographic
sortition and the assignees upon receiving the task assignment invokes cryptographic sortition to
either accept the assignment or reject it or reassign it another. Two-way cryptographic sortition
renders grinding attacks largely ineffective and hence plays a critical role across different stages
of PoRT protocol.

• We adopt parallel chains whereby chains are dedicated solely for an application for the lifetime
of the application. For each chain, a leader is elected for an epoch. Verifiable random functions
are used for both leader election and epoch determination. Only the elected leader can propose
blocks for the respective chains. The above design prevents forking and paves way to instant
block finality.

• We use dynamic subnets, the evolution of which is governed by two-way cryptographic sortition,
for batch verification (a batch is simply an aggregation of transactions). The topology of the
dynamically evolving subnet is not predictable, but is fully verifiable.

• We introduce a game theoretic construct named batch derivatives that serves the role of establishing
that nodes that were identified for batch verification completed their tasks in full adherence to
protocol. Batch derivatives render establishing out-of-band communication channels for deriving
answer-keys for batch verification futile.

• In the context of decentralized storage, we construct two epoch-based static subnets addressing
the state machine replication needs of transaction logs (on chain) and a CRUD friendly local
database. The former is called Transaction Log State Machine (TLSM) and the latter is called
Database State Machine (DBSM).

– TLSM is highly scalable, provides verifiability in storage and facilitates storage tracking.
– The DBSM engine, on the other hand, provides data storage guarantees, data redundancy,

and availability.
– The integrity of TLSM and DBSM is maintained through check-pointing and through

audits, with economic incentives for nodes fostering safety and liveness and penalties imposed
on nodes displaying malicious behavior

This two-tier system enables the decentralization of any underlying database while retaining all
the native features of databases.

2. Prior Art
The primary goal of Byzantine Fault Tolerant (BFT) protocols is guaranteeing safety and liveness in the
presence of arbitrary failure under corresponding assumptions made on network delay (synchronous,
or asynchronous, or partially synchronous operational settings). The cumulative size of arbitrary
failure instances is capped at less than one-third of that of the network. The design choices behind
state of the art BFT protocols encompass identifying a suitable network topology, one or more node-
to-node communication protocols, modeling message complexity, identifying the right consensus
type (deterministic or probabilistic) that best fits the design and importantly embracing cryptographic
primitives that secure the protocol and impart verifiability in its execution. Some protocols periodically
elect leaders for block proposals and while some other embrace leaderless designs. Sharding and
randomized sampling for consensus have been popularly adopted for improved scale. (Berger et
al. 2023) provides a comprehensive summary on state of the art BFT protocols.

2

Synchronized network settings are largely unrealistic in permissionless environments. BFT
protocols are typically built for partially synchronous settings and more recently for asynchrononous
settings. HotStuff (Yin et al. 2019) is a partially synchronous BFT consensus protocol that adopts
dynamic leader election based on weighted voting mechanism, and achieves lowered message
complexity and faster convergence than other such protocols that adopt round-robin leader election.
Mir-BFT (Stathakopoulou, David, and Vukolic 2019) deploys an approach that allows multiple
parallel leaders to propose blocks simultaneously upon partitioning the hash spaces into buckets of
equal size and assigning leaders for each. Algorand (Gilad et al. 2017) employs VRF in the form of
cryptographic sortition to randomly select participants for gathering consensus. Avalanche (Rocket
et al. 2019) proposes a probabilistic leaderless consensus protocol that relies of metastability whereby
nodes converge on a decision through randomized sampling of verdicts from across the network.

HoneyBadgerBFT (Miller et al. 2016) is centered around the Asynchronous Common Subset
primitive whereby nodes choose a randomized subset of transactions from their respective buffers,
apply threshold encryption and generate blocks comprising a union of the verified transactions.
Internet computer consensus (Camenisch, Drijvers, and Hanke 2022) leverages chain-key cryptog-
raphy in building a family of atomic broadcast protocols designed for safety (always) and liveness
(eventually) serving different message complexities. Dumbo (Guo et al. 2020) (Guo et al. 2022) is
a new BFT consensus protocol that introduces a hybrid architecture that combines the benefits of
both leader-based and leaderless approaches. Two atomic broadcast protocols are proposed, named
Dumbo1 and Dumbo2, that have asymptotically and practically better efficiency than HoneyBadger
BFT. Kauri (Neiheiser, Matos, and Rodrigues 2021) proposes a leaderless BFT architecture that
leverages a pipelined tree-based approach for message dissemination and aggregation to achieve high
throughput while maintaining low latency and low communication overhead

The protocols above are fundamentally built upon a variety of cryptographic primitives that
secure the protocol and on occasions yield scaling advantages. While digital signatures and collision
resistant hash functions are standard cryptographic primitives that are invariably adopted, threshold
signatures, erasure coding, secret sharing, multi-signatures, cryptographic sortition are popularly
adopted for improving security and at certain instances, improving scalability (Berger et al. 2023).
Omniledger (Kokoris-Kogias et al. 2018), Elastico (Luu et al. 2016), RapidChain (Zamani, Movahedi,
and Raykova 2018), Chainspace (Al-Bassam et al. 2017), Free2Shard (Rana et al. 2022) collectively
discuss the raw mechanics behind state sharding, compute sharding, network sharding and byzantine
tolerance in the presence of sharding for improved scalability.

Decentralized storage networks serve the purpose of secure storage and retrieval of data, with
the summarized service guarantees discussed below:

• Establishing time-continuity in storage: Data should be stored continuously for the storage
duration requested and sufficient copies of data should exist to handle failure instances

• Persistence in data redundancy: Decentralized networks have high churn rate by name. Multiple
copies of data should exist across the network. Additionally, protocols should be designed such
that existing nodes replicate data that was lost as a result of node failures or node departures and
guarantee data availability.

• Storage proofs: Upon audit, nodes should be able supply verifiable proofs of data storage.
• Storage tracking and Efficient retrieval: Through distributed hash tables or other means, the

protocol should enable tracking of data stored (either in whole or as fragments) and support
efficient retrieval.

Filecoin (P. Labs 2017) is built atop IPFS (Interplanetary File System) (Benet 2014), a distributed
file system that allows users to store and access files on peer to peer network. Filecoin establishes
storage proofs and data availability through Proof of Replication and Proof of Spacetime. Crust (Crust
2020) adopts Meaningful Proof of Work and Guaranteed Proof of Stake, for serving the same purpose.

3

Sia (Vorick 2014) adopts erasure encoding and stores fragments of data across the network and has
mechanisms in place to generate Proof of Storage of hashed data fragments. Arweave (Williams
and Jones 2018) adopts Proof of Access for storage proofs and Wildfire protocol for incentivized
data replication and retrieval. Swarm (Swarm 2021) and Storj (S. Labs 2018) are decentralized
storage solutions that are built for Ethereum interoperability. (0xphillian and Labs 2022) provides a
comprehensive account on different decentralized storage providers.

3. Proof of Real-time Transfer (PoRT) Consensus
3.1 Preliminaries
In this subsection, we shall begin with a handful of definitions and the relevant notations, and shall
list the cryptographic primitives that PoRT adopts.

1. Let N be a set of n nodes {N1,N2, ...,Nn}. Nodes can be of type full-node or storage-node. A
full-node runs the consensus protocol and plays a role in decentralized storage. The storage node
plays a role only in the latter.

2. Let S = {s1, s2, ..., sn} correspond to the stakes of the respective nodes, the amount of coins or
tokens that each node has invested as a collateral to participate in the network.

3. Let the number of Byzantine nodes in the network be f . PoRT protocol is designed for a
composition of honest nodes and Byzantine nodes under which n ≥ 3f + 1.

4. LetA be a set of a applications {A1,A2, ...,Aa}. Applications are data producers and / or consumers
of data.

5. Let notation [x] denote the set {1, 2, ..., x}.
6. Let H be a collision resistant hash function (SHA256).
7. Let DSA_KeyGen, DSA_Sign and DSA_Verify be the digital signature algorithms for the

generation of key pairs, signing of messages and verification of signatures respectively.
8. Nodes and applications (henceforth referred to as entities) generate their own public-private key

(pki, ski) using KeyGen, where i ∈ [n + a]. Their decentralized identity (DID) idi = H(pki).
9. Let R be the Bootstrap registry. Every entity registers itself with R by submitting a DID

document that comprises their public key(s), DID(s), service endpoints and other DID related
metadata.

10. Given a message m and Ni’s private key ski, signature S is generated as S = DSA_Sign(m, ski) and
the signature is verified as DSA_Verify(S, pki).

11. Let Dx and Dh correspond to the XOR distance and hamming distance functions respectively.
Let a and b be two binary strings. The XOR distance between them is Dx(a, b) = a⊕ b, where ⊕
is the XOR operator. The hamming distance between them is Dh(a, b) = a ⊔ b, where ⊔ is the
hamming distance operator.

12. Let TS_KeyGen be the distributed key generation function under the context of threshold
signature. Let DSA_Sign and DSA_Verify, from above, serve their respective roles under the
new context. Let t correspond to the threshold value pertaining to the minimum number of
signatures required.

13. Verifiable Random Functions (VRF) are realized in PoRT as follows: Given a public input
x, a node Ni generates a random number y = H(DSA_Sign(x, ski)) and generates a proof
π =DSA_Sign(x, ski). y is a number that only Ni gets to generate from x. If supplied with
(x, y,π), other nodes can corroborate that y was derived from x using DSA_Verify(x, y, pki) and
verifying if y = H(π).

14. Let P be a function that takes a 256 bit number r as input and generates a number ŝ between
(0, 1): ŝ = P(r). Let r1, r2, ..., r32 be ordered set of bytes in r. A byte s is generated from r :
s = r1 ⊕ r2 ⊕ ... ⊕ r32 and is normalized as ŝ = s/256

15. Let Q be a function that takes three inputs: a 256 bit number r, positive integers p and q and
generates p numbers in the range (0, q) by applying bitwise right shift operation (the operator

4

being >>). on r followed by a modulo q. Q generates an array of positive numbers {m1,m2, ...,mp}
where mi = (r >> i) mod q, ∀i ∈ [p]

3.2 Decentralized Identity Management
PoRT furnishes the decentralized public key infrastructure (DPKI) and other relevant DID SDKs
that enable every entity that is associated with the decentralized platform to create and manage its
own decentralized identity. Entities create their decentralized identities as mentioned in items 8
and 9 in the previous subsection. Decentralized identities are globally unique, cryptographically
verifiable, are resolvable with high availability and plays a fundamental role in preserving the privacy
of entities. Further, it provides a framework for auto authentication and supports interoperability
across platforms.

The bootstrap registry R (item 9) is maintained at an identity management blockchain (such as
Sovrin, uPort) and a set of nodes from the network are identified to serve as DID nodes serving as the
network’s liaisons for state maintenance of R and for data retrieval. Per protocol, nodes can either
connect with the DID nodes to retrieve the most current DID documents of other entities or retrieve
the same from immediate peers or correspond directly with the external identity management
blockchain in and maintain local repositories of R.

3.3 Network Model
PoRT protocol adopts a scale-free, semi-structured, self-organizing peer-to-peer (P2P) overlay
network. The desired properties of such a network are low propagation latency, efficiency in query-
routing for resource discovery and resource sharing, resilience to network churn, and supporting
high scalability while remaining free from hierarchical organization. The topology of the proposed
network and the underlying mechanisms for data storage and retrieval, both draw inspirations from
constructs adopted by structured and unstructured P2P overlay networks and optimizations proposed
for each (Kademlia (Maymounkov and Mazières 2002), Perigee (Mao et al. 2020)).

3.3.1 Network Topology
In structured P2P overlay networks, nodes and data objects are organized onto a keyspace, as (key,
value) pairs. Nodes identify their peers through a notion of proximity based on their respective
keys. Further, there is a deterministic mapping between data objects and nodes identified based
on key proximity. The network adopts Distributed Hash Tables (DHT) (Hassanzadeh-Nazarabadi
et al. 2021) as a substrate that holds information on data object location and facilitates efficient
resource sharing. Unstructured P2P overlay networks, on the other hand, organize nodes in a flat
or hierarchical random graphs. Nodes identity their peers through randomized connectivity, or
through a mechanism that serves their mutual interests. Protocols such as flooding, random walks
and expanding-ring time-to-live search are typically used for querying content. While the former
network’s key-based routing is scalable and locates rare data items efficiently, the latter is better suited
for networks with high churn and locates highly replicated content with much lesser overhead.

Let the proposed network be represented as an undirected graph G = (V ,E) with n nodes
Ni ∈ V , i ∈ [n] , each assigned a unique 256 bit identity idi (also the key) obtained from hashing
their respective public keys. The set of edges eij ∈ E, where i ∈ [n], j ∈ [n], i ̸= j is set to 1 when
node Ni and Nj are connected and set to 0 otherwise. They are organized into binary-tree with
their positions identified with the unique prefixes to their respective identities. Nodes connect with a
selected set of peers and maintain a routing table facilitates query-routing and resource localization
as illustrated below.

• For each node, the tree is partitioned into successively lower sub-trees based on binary prefixes
of identities that did not contain the node. Nodes look for at least one peer from within each

5

sub-tree.
• Distance between two nodes ni and nj is defined by the XOR metric (Maymounkov and Mazières

2002), d(ni, nj) = idi
⊕

idj. For each 0 ≤ m ≤ 255, a node looks towards maintaining a list of
nodes (called k – buckets) whose distance is in the range (2m, 2m+1) from itself.

• In addition to keyspace proximity, nodes factor in network heterogeneities and node configura-
tions (geographic distance, bandwidth, compute, memory) that directly impact broadcast latency
in identifying an optimal set of peers (Mao et al. 2020).

• From within each sub-tree the k – bucket lists comprise (node id, port number, IP address, latency,
node up-time). The lists within each bucket is sorted based on a weighted combination of latency,
node up-time and a recency of interaction factors. Nodes that responded to a request recently
are weighed more.

The remote procedure calls namely, {PING, STORE, FIND_NODE, FIND_VALUE} that are
defined in Kademlia are borrowed as is for PoRT.

3.3.2 Communication model
We assume partially synchronous operational settings, whereby messages sent by honest nodes
will get delivered within a certain time δ after the passage of an unknown global stabilization time.
The protocol handles delays in message transmission by incorporating timeouts and requests for
re-transmissions. Time-out events can induce nodes to temporarily update their respective k-buckets
until normal operational settings are observed. During instances of unpredictability in network
conditions, when time-out events are unusually frequent, nodes resort to temporarily updating
their k-buckets until normal operational conditions resume or establish new connections with peers
using randomized connectivity and adopt practices from unstructured network settings for resource
discovery.

Nodes communicate with one another generally through direct port-based communications and
resort to peer-to-peer gossip sublayer for network wide dissemination of messages. PoRT protocol
adopts HTTP/3 QUIC protocol as the underlying transport protocol.

3.4 Standardized Data Schema and Transaction Verification
A data transaction can correspond to any one of (a) transfer of data between two or more applications
(type: create or update) (b) transfer of data to self (type: create) (c) data query (type: read) (d) data
deletion (type: delete). The services requested can fall under one of three types: (a) delivery and
storage (b) storage only (c) data retrieval.

Let D be a set of standardized data schemas {d1, d2, ..., dk}, where each schema defines an
application specific structure of the data payload, delineating the fields that make up the data header
and body. For every di there exists a unique URI ui that points to an entry in the bootstrap registry R.
While applications are free to adopt an existing data schema or use their own customized data schema,
the data fields and formats identified for data conformity should be adhered to for the platform to
accept the transactions. Let (pkp, skp) and (pkc, skc) be the key pairs of the producer and consumer
respectively. Let [h|0b] correspond to the two header and body of the data transaction dt. The hash
signature (dtsign) field corresponds to the following: DSA_Sign(H([h || DSA_Sign(b, pk_c)]), sk_p).
Table 1 illustrates a sample data transaction that adopts the standardized schema for IoT.

3.4.1 Data Transaction Verification Function
Let DT = {dt1, dt2, ...dtk} be a set of data transactions. The data transaction verification function be
V: DT → {0, 1}, with V(dt) = 1 for valid transactions and V(dt) = 0 otherwise. Source authenticity,
signature validity, data integrity and schema compliance are primarily established in data transaction
validation. Data transaction validation entails the following: [Verify if H(dt) = DSA_Verify(dt_sign,

6

Table 1. Standardized Data Schema

Header

Application DID Hash of the application’s public key

Transaction ID A GUID

Producer address DID URI of the producer

Consumer address DID URI of the consumer or group or self

Command type An enum pointing to one of 4 commands:
Create (insert), Read (query), Update and Delete

Nonce An incremental index that signifies the order
of data transactions from an application

Schema URI URI adopted for the data payload

Timestamp Dispatch timestamp

Hash Signature Signed hash of the full data transaction

Body

Raw Data Actual payload, with the field values encrypted.

pk_p) ∧ verify if schema URI is valid ∧ verify raw data schema compliance ∧ verify {nonce, command
type} validity ∧ verify producer authentication].

Figure 1. Messages dispatched by applications making it to mempools across the network. The node designated as leader
for a chain, prepares batches comprising of messages sent by the application that is tied to the chain.

3.5 Mempool data structure and Entropy Source
Mempool is a data structure (Figure 1) that nodes of the network use to store unconfirmed transactions
that have been broadcast to the network by applications. Applications send their transactions to one
or more nodes of the network and nodes in turn disseminate the transactions across the network
use gossip protocol. Network heterogeneities generally result in the transactions making it to the
individual mempools in different orders. Transactions reside on mempools until they are batched up

7

for decentralized verification. PoRT protocol provides Network Discovery Service APIs that lets any
entity (node, application) to query the status of mempools across the network, to track transaction
propagation across mempools and monitor transaction handling latency.

The standardized schemas for transactions implicitly introduces entropy in every transaction
that is sent to the network. With fields such as timestamp, nonce, transaction ID being unique and
non-repetitive for a given application, a set of transactions sent by an application act as stores of
entropy that the network can tap into to derive randomness in the system. The network dissuades
duplicate transactions from being sent by levying penalties on the producers for such actions. The
network checks for duplicate transactions being sent to the network by periodically comparing
the transaction hashes with that of prior transactions. Producers who are repeatedly generating
non-compliant transactions face rate limits and face the risk of eventually getting phased out.

Our solution uses batches of transactions as a source of entropy. While at the outset the above
design may appear to invite grinding attacks, a two-way cryptographic sortition algorithm (explained
subsequently) that PoRT incorporates will render such attacks unrewarding.

3.6 Parallel chains and Leader Election Function
PoRT protocol assigns all validated transactions sent to the network by an application to a single
chain that is solely dedicated to that application. This design helps better management of application
data ranging from faster responses to data query, efficient audits on transaction handling, until the
eventual chain retirement when the application exits the platform. The network shall comprise as
many independent chains as there are applications onboarded and hence the name, parallel chains.
When an application ai (with DID: idi) is first onboarded onto the platform, the following steps are
adopted:

• A dedicated chain whose DID is H(idi) is created across all nodes of the network.
• The application specifies the size of storage required (in GB), region(s) of storage, billing frequency

(monthly, bi-monthly, semi-annual, annual) and a replication factor (rf) for its transactions namely,
{3, 5, 7}.

A leader is elected for the newly created chain and is deemed as the only entity who is allowed to
propose blocks until a certain inter-epoch block height is reached for that chain, after which, a new
leader is elected and process continues. An epoch is the time duration between two leader elections
and inter-epoch block height is the number of blocks added to chain during that epoch. Both the leader
election and the subsequent block height determination use Verifiable Random Functions. The above
design prevents forks and facilitates instant finality, thereby helping the platform’s throughput.

Whenever a chain cx comes up for election, whose last block was bx a node Ni with DID idi
generates a 256 bit random number ri as ri =H(DSA_Sign(H(bx), ski)) which is mapped to number
between (0, 1), as r̂i = P(ri) (from (14)). A score wi is computed as the weighted combination of the
node’s stake si and r̂i in the form wi = a ∗ si + b ∗ r̂i, where a and b are parameters pre-identified by
the network, 0 < a < 1, 0 < b < 1 and a + b = 1. The inter-epoch block height is determined as
bhi = Q(ri, 1,max_blocks) (from 15), where max_blocks is the network wide parameter that indicates
the maximum number of blocks a leader can propose during one epoch on a chain.

The 256 bit random number ri is a number that only Ni can generate and is not decipherable to
the rest of the network until explicitly shared by the node. Ni can prove to the rest of the network
that ri was generated from H(cx) by submitting proof πi, where πi = DSA_Sign(H(idi ⊕ H(cx)),
ski), that can be verified by the network upon unsigning and verifying that the message signed was
derived from H(cx). Ni disseminates its scores to the network (as illustrated in Table 2 through gossip
sublayer.

The node that generated the highest wi will be deemed as the leader for chain cx, until bhi new

8

Table 2. Leader election function (LEF) reults submitted by Node Ni

LEF Header

Signature Signed hash of [Header | Result Body]
Chain ID H(idi): DID of application ai’s chain

From address DID URI of Node Nx

LEF Body

Random number generated ri
Proof DSA_Sign(H(idi ⊕ H(ci))

Inter-epoch block height bhi
Stake held si
Cumulative score wi

blocks were added to the chain. The index z of the leader is chosen as

z = arg max
i∈(1..N)

a ∗ si + b ∗ r̂i (1)

But the challenge is that in a partially synchronous network, there is a possibility that some nodes
experience longer delays or even fail completely and as a result identifying the absolute maximum
score as detailed in the equation above may be infeasible. PoRT protocol adopts a time-out period that
is long enough to accommodate unforeseen network delays, but short enough to keep the protocol
from not stalling, after the passage of which, nodes that deem that they have the highest overall
scores declare themselves as the leader. If such a declaration is contested, then the leader is elected
with a second round of consensus gathering.

The above design is verifiable. It gives nodes that held higher stakes a better chance of winning the
leader election for the given chain, but also introduces uncertainty into leader election by introducing
the weighted random number r̂i in the equation. At a high level, the leader Nz serves the following
roles for chain cx until bhz blocks are added to chain, namely:

• Aggregating transactions sent by application ax from its mempool and creating batches of
transactions that will be dispatched for verification

• Identifying subnets using two-way cryptographic sortition for (i) consensus gathering on the set of
valid transactions (ii) subnet driven state machine replication for on-chain storage and CRUD
friendly local data stores.

3.7 Two-way Cryptographic Sortition
Cryptographic sortition is a technique used in distributed systems to randomly select one or more
participants from a group of potential candidates in a way that is both unbiased and verifiable.
Consider the case when a leader node uses a source of randomness from within the network, and
generates a random number that only they have the capacity to generate and repurposes the same to
identify a subnet to execute one or more tasks. While it can be proven that the subnet was indeed
created from the given random number, there isn’t a way to rule out the scenario when the leader
employed a grinding attack in identifying the optimal random number that identifies their fellow
Byzantine nodes for the subnet.

PoRT protocol requires the individual nodes identified to serve the task(s) to run cryptographic
sortition themselves, by generating their own random number that was derived from the same
source of randomness as that of the leader, and determining for themselves if they are allowed to
serve the assigned role or otherwise. In this design, the task assigner’s grinding attack could be

9

rendered ineffective as they cannot predict the task receiver’s allowed role to serve. The application of
cryptographic sortition both by the task assigner and the task receiver is what we call as the two-way
cryptographic sortition.

3.8 Batch creation, batch assembly and batch verification
Node Nz aggregates the unverified data transactions that were sent by application ax (whose chain
in cx), from its mempool and creates a batch B = {dt1, dt2, ...dtm} comprising an ordered set of m
transactions. Batch creation is governed by the most impinging of the three criteria namely: (a)
maximum number of data transactions (b) maximum size of the batch (c) maximum wait-time
allowed for data transactions. Using B as a source of entropy, Nz generates a random number
rz =H(DSA_Sign(H(B), skz)) and the VRF proof πz =DSA_Sign(H(B), skz). Next, it identifies
indices of p nodes who shall be the recipients of batch B by invoking Q(rz, p, n) (from 15), where n
corresponds to the number of nodes in the network. The leader shares (rz, πz) with the rest of the
network to supply evidence that the indices in p were obtained from rz.

Since all transactions dispatched to the network are propagated to mempools across the network,
PoRT protocol keeps communication overheads associated with batch dispatch light by only requiring
the leader to dispatch an ordered set of transaction IDs that comprise the batch and not the entire
batch. The recipient nodes assemble the batch by retrieving the corresponding transactions from
their respective mempools. If due to network delays, the recipient node finds one or more transactions
missing from its mempool, they shall retrieve the missing transactions from their peers using DHTs
for resource lookup.

Batch verification primarily entails running data transaction verification detailed in section 3.4.1
on the ordered set of transactions in a batch. It is important to establish that a node which, as per
protocol, was supposed to run batch verification on a given batch B, performed the job independently
and thoroughly without gathering the verification results through out-of-band communications
with other fellow nodes who were tasked at verifying the same batch. If such maliciousness was left
unchecked, then the Byzantine nodes may gain unfair computational advantage over honest nodes.
PoRT protocol adopts a game theoretic construct named batch derivatives to such freeloader attacks in
batch verification.

Figure 2. Control transactions that resemble data transactions sent by applications but are designed to fail data transaction
verification are inserted at random indices. The original batch had contained one transaction that would not have passed
verification.

3.8.1 Batch Derivatives
A batch derivative B′ is obtained by inserting one or more non-conforming transactions called the
control transactions at random indices onto B. A control transaction is similar to a regular transaction
in structure, but is designed to fail verification either due to source authentication problems or due to
data integrity issues. The control transactions are dispatched to the network by the network nodes
and hence they make it to the mempools across the network just like regular transactions do. Let

10

C = {c1, c2, ...cy} be the set of y control transactions. B′ = B⊙ C is a batch derivative constructed
upon inserting them at random locations onto B, such that the data transactions in B still appear in
the same relative order. The operator ⊙ signifies control transaction ingestion. Figure 2 illustrates
the creation of B′.

Figure 3. An illustration of the dynamic subnets for batch verification

3.8.2 Two-way Sortition driven Dynamic Subnets
Batch verification is a multi-stage process, the evolution dynamics of which is unpredictable. Each
node that received a batch (or a batch derivative) can perform any one of 4 roles in batch verification
namely, (a) Verify the received batch and provide verification results to the leader (through direct
port-based communication) and the rest of the network (through gossip) (b) Create a batch derivative
and propagate the same (c) Perform behavioral audits, monitoring the VRF proofs submitted and
the overall adherence to protocol (d) Assume the role of a by-stander, with no real role to play in
verifying the batch.

Stage #1 of batch verification proceeds as follows: Every one of the p nodes that leader Nz had
identified to take part in verifying batch B, perform the following tasks:

• Step #1: Each node takes (rz, pz) submitted by Nz and verifies Nz’s source of randomness and if
their node index was indeed derived from rz as prescribed by the protocol. If incongruencies are
detected, then the node reports the non-conformity observed.

• Step #2: Nodes in this stage of batch verification assume the role of batch derivative creation
and propagation. Each node uses batch B as a source of entropy and generates its own random
number r′ (signing with its own private key) and the associated proof of randomness. It invokes
Q(r′, 1, p) and determines the the number of nodes q that is should dispatch batch derivatives
to. Next, it invokes Q(r′, q, n), identifies the q recipient node indices, creates different batch
derivatives {B′1,B′2, ...,B′q} for each recipient by inserting a control message at a random index
onto B and dispatches them their respective batch derivatives.

Stage #2 of batch verification proceeds as follows:

• The recipient nodes in the second stage of batch verification, again establish protocol conformity
as detailed in Step #1 above.

11

• Nodes decipher their respective roles based on the random number r′ that they generate using the
same entropy source as the leader did, B. Each node invokes P(r′), which maps r′ to a probability
score ŝ. Based on ŝ, the node identifies the role it is allowed to serve:

0 ≤ ŝ < 0.2 =⇒ dispatch batch derivatives
0.2 ≤ ŝ < 0.6 =⇒ verify batch derivative

0.6 ≤ ŝ ≤ 0.8 =⇒ serve as a bystander
0.8 ≤ ŝ < 1 =⇒ run behavioral audits

• Batch derivative dispatch is detailed in Step #2 above.
• As a batch derivative verifier, nodes run the data transaction verification function on every

transaction in the batch derivative and submit their results (Table 3 to the network). Nodes
deploy compute sharding, thereby identifying segments of the batch that they will run batch
verifications for. These segment indices are also determined from the random number that they
generated.

• As a bystander, the node serves no role on the received batch derivative.
• As an audit node, the node corroborates source of randomness, VRF proofs and overall adherence

to protocol.

Figure 3 illustrates dynamic subnet creation for batch verification. Batch verification runs for one

Table 3. Summary from Batch Derivative Verifier

Result Header

Signature Signed hash of [Header | Result Body]

Batch ID Hash(B): Hash of the original message

From address DID URI of Node Nj

Result Body

Role Batch Verifier

Proof πx < h(B), PvKx >

Assigner DID URI of node Ni that assigned the
batch derivative

Batch derivative B′ : Batch derivative that was verified

Segments reviewed 1, 3, 4

Verification result h(M′
1), h(M′

3), h(M′
4)

Indices of failed messages Indices where message verification failed

additional (and final) stage. The leader Nz gathers verification results submitted and gathers the list
of verified messages in the batch and creates a block of verified transactions that shall be added to
chain cx. The above design renders adaptive attacks ineffective and disincentivizes collusion.

3.9 Decentralized Storage: LogChains and Local Data Stores
A block B̂ comprises an ordered set of verified data transactions. The header of the block comprises a
Merkle Root, derived from a hash tree (Merkle Tree) of all the ordered data transactions contained
in the block. All the transactions in B̂ originated from application ax, are destined to be stored on
the application-specific chain cx, and will have to be replicated a minimum of rfx times to meet the
application’s requirements. PoRT’s solution towards decentralized storage encompasses the following:

12

Figure 4. An illustration of blocks stored in epoch based static storage subnets

3.9.1 State Machine Replication using Subnets
State Machine Replication is executed in a subnet context where two subnets are created, one
for chain-based storage (called Log-Chain store (Figure 4) and the other for a CRUD friendly
storage (called Data store). The subnets are created using two-way cryptographic sortition with
full verifiability. The size of the Log-Chain store subnet is f + 1 (where in a n node network we
have assumed that the number of Byzantines f are such that n 3f + 1). The size of the data store
subnet is the same as the replication factor rfx chosen by the application. The subnet’s term period
is the same as that of the leader for the chain. After bhz blocks (called inter-epoch block height)
have been added to chain, both the subnets are retired. These are called epoch based static subnets for
decentralized storage, ones that are commissioned into existence at the beginning of a leader’s term
and decommissioned from chain storage responsibilities at the end of the leader’s term.

3.9.2 Epoch based Static Subnets for Storage
The entropy contained in the first block B̂ proposed by the leader for the chain during the epoch is
as the source of entropy. Nz generates a random number r̂z =H(DSA_Sign(H(B̂), skz)) and the VRF
proof π̂z =DSA_Sign(H(B̂), skz). The leader executes the first step in the two-way cryptographic
sortition step. Next, it identifies the indices of f + 1 + rfx nodes by invoking Q(̂rz, f + 1 + rfx, n), the
first f+1 nodes getting invited to serve Log-Chain storage for chain cx and the remaining rfx to serve
as the local data store for the same chain for the epoch. The leader supplies r̂z and π̂z along with the
respective invitations.

The recipient nodes establish protocol conformity (as detailed in Step #1 in the previous subsec-
tion) whereby they establish that there was no malicious behavior or protocol non-conformity in
them getting the invitations to join the epoch based static subnet. The nodes apply cryptographic
sortition themselves, generate their own random number r̂′z (derived from B̂). If P(̂r′z) ≥ 0.5, then
they accept the invitation. If P(̂r′z) < 0.5, then the node invokes Q(̂r′z, 2, n) and identifies new
recipient nodes for the invitation. The nodes submit their random numbers and the corresponding
proofs to the leader and to the rest of the network.

Once the subnets have been formed, every block dispatched by the leader gets replicated within
the LogChain subnet on the respective chains dedicated for application ax. As a measure of safety, a
Merkle root is derived, whereby the hash of the blocks added to chain in the current epoch form the
leaf nodes of the Merkle tree, every time a new block is added to chain and stored on the respective
block headers. The transactions added to the block are simultaneously maintained in local data store
preserving the order of the transactions. A data transaction of type create results in a new record added

13

to the local data store. Transactions of type update result in records getting updated as requested.
Transactions of type read cause no change to the state of the data store and those of type delete get
expunged from the data store. Apart from the two forms of storage detailed above, a third network
wide chain that leader Nz presides for the epoch duration is maintained that logs the hash of the
chain at the end of every epoch, yeilding network-wide checkpointing capabilities.

3.10 Safety, Liveness and Byzantine Defense Mechanisms
Table 4 discusses the different Byzantine attack vectors that PoRT protocol defends against. The
carefully laid out design choices starting from standardized message schema, network discovery
service APIs, batch derivatives, two-way cryptographic sortition and dynamic subnets contribute
towards keeping adaptive attacks generally ineffective. The safety guarantees of the protocol stem
from the no fork parallel chain construct that has a leader elected for an epoch duration. Further,
dynamic audits and protocol governed checkpointing in the form of Merkle roots derived for every
newly added block to the respective chains further strengthen the safety claims of PoRT protocol.

For liveness guarantees, PoRT protocol adopts the following measures: if a node that was inducted
into either the dynamic subnets for batch verification or the static subnets for decentralized storage
crashes or simply becomes unresponsive, to keep the protocol moving, the node is replaced by its
nearest node (applying XOR distance on the hash of the node’s DID) in the Kademlia keyspace. The
same applies to the leader. If the leader goes down or becomes unresponsive or displays malicious
behavior, nodes agree to initiate a lighter version of the view change protocol. As against the three
phases of the protocol (preparation phase, proposal phase and acceptance phase), just the preparation
phase is initiated and nodes need to come to a consensus that the primary leader is non-reachable.
Then, in deterministic fashion, the node that was closest to the leader node in the keyspace is
appointed to take up the leader’s responsibilities.

There could be instances when the two-way sortition driven static subnet creation process could
run into far more rounds than usual, either due to the distribution of random numbers generated
by the potential candidates or due to unfavorable network conditions. PoRT employs a time-out
duration after which the candidates for unfilled spots in the subnet are identified using deterministic
methods such as keyspace proximity to leader. These measures are integrated to preserve liveness.

4. Discussions and Future work
Kandola, powered by PoRT protocol, empowers applications to define their own data schema, secures
data at source, preserves data integrity and privacy all through the data life-cycle and wrests data
ownership and control at the hands of the rightful owners. As a decentralized data exchange platform
built for serving real-time data needs of applications, Kandola shall unlock the many potentials of
decentralized data marketplaces. Users can buy and sell data for the development of data-driven
services. Garnering massive datasets for training AI models with the right permissions from the
respectie data owners can further the already interesting AI landscape.

Beyond facilitating data pipeline markets, Kandola’s approach encourages the development of
open standards. IoT device manufacturers, for example, could agree on data standards, ensuring
that devices across different manufacturers adhere to a unified schema. This standardization allows
solution developers to build applications based on the schema without being restricted to a specific
device or manufacturer, ultimately fostering a larger marketplace for both parties (e.g., the Tuya IoT
Ecosystem). Kandola’s infrastructure layer has the potential to make a substantial positive impact
across various industries and domains. By creating a fair marketplace and offering strong economic
incentives for specialized storage providers, the platform unlocks exciting possibilities for the future.

Our Team is currently building a TestNet platform that will be run by PoRT consensus. We
will run extensive tests with real-life data streams being sent to the platform and will share our
performance benchmarks with the community.

14

Table 4. PoRT protocol’s defense against attack vectors

Attack vector PoRT Defense

Replay attack: Producer burdens the network Nodes run hash-collision test on periodically,

with duplicate, messages undermining the source on incoming messages by comparing their hash
of entropy and stressing the network with that of mempool messages

Sybil attacks: A malicious node operates under In a stake based network with role fluidity, high

multiple identities simultaneously collateral needed for Sybil attack is less rewarding

Censorship attack: The leader for the chain Network Discovery Service API’s let any node

withholds messages from certain producers, not run queries off of leader’s mempool and detect
including them in a batch instances of withheld messages.

Batch incongruence: The leader or batch derivative Audit nodes check for the hashes of batch

propagators may add or remove or shuffle native derivatives by expunging control messages
messages and delay consensus and trace origins of batch incongruence

Freeloadership: Fellow Byzantine nodes may establish Dynamic subnets introduce role unpredictability

out-of-band communication and share answer keys rendering such collusion less viable or effective

Grinding attacks: A leader could manipulate blocks Two-way sortition in conjunction with batch

such that their own re-election or that of their fellow derivatives makes network processes less
and the Byzantine is favored predictable and hence more secure

Adaptive attacks: Malicious nodes may stage Dynamic subnets diminish success of

coordinated attacks on certain nodes affecting behind coordinated attacks as roles are
their ability to serve a role and delaying consensus non-decipherable to the rest of the network

Non-conformity in roles: Malicious nodes may perform Audit nodes periodically verify role conformity.

operations that are beyond their scope Non-conforming nodes could loose stake.

References
0xphillian and Fundamental Labs. 2022. Decentralized Storage: A Pillar of Web3. https://6pjecoitbb3mbacc67rvmct3gbugplnty

5ptok4t6tkgvxnoj2ya.arweave.net/89JBORMIdsCAQvf jVgp7MGhnrbPHXzcrk_TUat2uTrA.

Al-Bassam, Mustafa, Alberto Sonnino, Shehar Bano, Dave Hrycyszyn, and George Danezis. 2017. Chainspace: A Sharded
Smart Contracts Platform. ArXiv abs/1708.03778.

Benet, Juan. 2014. IPFS - Content Addressed, Versioned, P2P File System. ArXiv abs/1407.3561.

Berger, Christian, Signe Schwarz-Rüsch, Arne Vogel, Kai Bleeke, Leander Jehl, Hans P. Reiser, and Rüdiger Kapitza. 2023.
SoK: Scalability Techniques for BFT Consensus. ArXiv abs/2303.11045.

Camenisch, Jan, Manu Drijvers, and Timo Hanke. 2022. Internet Computer Consensus. Proceedings of the 2022 ACM Symposium
on Principles of Distributed Computing.

Crust. 2020. Crust: White Paper v1.9.9. https://crust-data.oss-cn-shanghai.aliyuncs.com/crust-home/whitepapers/whitepaper_
en.pdf .

Gilad, Yossi, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. 2017. Algorand: Scaling Byzantine
Agreements for Cryptocurrencies. Proceedings of the 26th Symposium on Operating Systems Principles.

Guo, Bingyong, Yuan Lu, Zhenliang Lu, Qiang Tang, Jing Xu, and Zhenfeng Zhang. 2022. Speeding Dumbo: Pushing
Asynchronous BFT Closer to Practice. IACR Cryptol. ePrint Arch. 2022:27.

Guo, Bingyong, Zhenliang Lu, Qiang Tang, Jing Xu, and Zhenfeng Zhang. 2020. Dumbo: Faster Asynchronous BFT
Protocols. Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security.

Hassanzadeh-Nazarabadi, Yahya, Sanaz Taheri Boshrooyeh, Safa Otoum, Seyhan Uçar, and Öznur Özkasap. 2021. DHT-based
Communications Survey: Architectures and Use Cases. ArXiv abs/2109.10787.

15

Kokoris-Kogias, Eleftherios, Philipp Jovanovic, Linus Gasser, Nicolas Gailly, Ewa Syta, and Bryan Ford. 2018. OmniLedger:
A Secure, Scale-Out, Decentralized Ledger via Sharding. 2018 IEEE Symposium on Security and Privacy (SP), 583–598.

Labs, Protocol. 2017. Filecoin: A Decentralized Storage Network. https://f ilecoin.io/f ilecoin.pdf .

Labs, Storj. 2018. Storj: A Decentralized Cloud Storage Network Framework. https://www.storj.io/storjv3.pdf .

Luu, Loi, Viswesh Narayanan, Chaodong Zheng, Kunal Baweja, Seth Gilbert, and P. Saxena. 2016. A Secure Sharding
Protocol For Open Blockchains. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security.

Mao, Yifan, Soubhik Deb, Shaileshh Bojja Venkatakrishnan, Sreeram Kannan, and Kannan Srinivasan. 2020. Perigee: Efficient
Peer-to-Peer Network Design for Blockchains. Proceedings of the 39th Symposium on Principles of Distributed Computing.

Maymounkov, Petar, and David Mazières. 2002. Kademlia: A Peer-to-Peer Information System Based on the XOR Metric. In
International workshop on peer-to-peer systems.

Miller, Andrew K., Yuchong Xia, Kyle Croman, Elaine Shi, and Dawn Xiaodong Song. 2016. The Honey Badger of BFT
Protocols. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security.

Neiheiser, Ray, Miguel Matos, and Luís E. T. Rodrigues. 2021. Kauri: Scalable BFT Consensus with Pipelined Tree-Based
Dissemination and Aggregation. Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems Principles.

Rana, Ranvir, Sreeram Kannan, DavidN C. Tse, and Pramod Viswanath. 2022. Free2Shard. Proceedings of the ACM on
Measurement and Analysis of Computing Systems 6:1–38.

Rocket, T. J., Maofan Yin, Kevin Sekniqi, Robbert van Renesse, and Emin Gün Sirer. 2019. Scalable and Probabilistic
Leaderless BFT Consensus through Metastability. ArXiv abs/1906.08936.

Stathakopoulou, Chrysoula, Tudor David, and Marko Vukolic. 2019. Mir-BFT: High-Throughput BFT for Blockchains.
ArXiv abs/1906.05552.

Swarm. 2021. Storage and Communication Infrastructure for a Self-Sovereign Digital Society. https://www.ethswarm.org/swarm-
whitepaper.pdf .

Vorick, David. 2014. Simple Decentralized Storage.

Williams, Samuel, and William Jones. 2018. Arweave Lightpaper Version 0.9. https://whitepaper.io/document/627/arweave-
whitepaper.

Yin, Maofan, Dahlia Malkhi, Michael K. Reiter, Guy Golan-Gueta, and Ittai Abraham. 2019. HotStuff: BFT Consensus with
Linearity and Responsiveness. Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing.

Zamani, Mahdi, Mahnush Movahedi, and Mariana Raykova. 2018. RapidChain: Scaling Blockchain via Full Sharding.
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security.

16

